
2007-05-18

Ottawa Linux Symposium
 2007

Christoph Lameter, Ph.D.
clameter@sgi.com
Technical Lead, Linux Kernel Software
Silicon Graphics Inc,

NUMA BOF
Non-Uniform-Memory-Access

2

Overview

Introduction
NUMA developments in the last year
Upcoming changes to Andi Kleen's numactl
Moving from cpusets to containers
Implementing constraints on subsystem use of certain
nodes (shmem, hugetlb, slab)
Upcoming issues with very large processor counts per
node
Memoryless node support
Lee Schermerhorn: Memory policies
Inconsistencies and limitations of NUMA allocation
constraints under Linux.
Conclusion

3

NUMA developments in the last year

NUMA aware VM counters (ZVCs)
Per cpu differentials folded periodically into global counters.
Tested and scales up to 1k cpus 1k nodes.
Avoid loops over all processors

GFP_THISNODE
Fix fallback scenarios in SLAB that lead to impure per node lists and
caused placement of remote objects as local.
Allow subsystem control over NUMA nodes in use

SLUB allocator
Reduces memory requirements
Reduce cpucache footprint
Avoids NUMA policy processing overhead

Scheduler
Reduction of the load balancing actions
Load balancing for large systems with interrupts enabled.

SHMEM
Ability to specify allocation policy on bootup

Memory less node support (currently broken but gives the impression that it
works. Andrew merged a “bugfix” over Andi's and my objections)

4

Upcoming changes to numactl

Have been pending for a year now with Andi.
sys_move_pages in libnuma

Allows moving of individual pages of a process
Useful to implement automatic page migration by first
profiling the memory access patterns and then move
individual pages to the most advantageous node.

migspeed tool
Test page migration speed

Support for cpuset relative node numbers
Useful to write scripts that can be run in multiple
cpusets that have different sets of nodes.
Currently users are improvising this functionality

Higher number of CPUs (up to 16k) and nodes (up to
1k) for IA64 and x86_64.

5

Cpusets to Containers

Basic agreement between Paul Jackson (cpuset
maintainer) and Paul Menage (container author) that
we will do this.
Code is more or less in Andrew's tree
Cpu controllers
Memory controllers
How do we integrate support for memory policies and
other constraints into this?
One option is to get rid of memory policies and allow
an association with a container or memory controller
to take care of directing NUMA allocations.

6

Limiting the node use of Subsystems

Needed for asymmetric NUMA configuration
Node 0 is dedicated for a certain purpose. No huge page allocs
there.
Nodes > 0 are very small. We want no slab allocations there.
Node 0 is big we want to restrict huge pages to node 0.

Problem with interaction of memory policy / cpuset layer
Zonelists contain all nodes and we can currently only limit the
nodes by filtering the nodes in the page allocator.
SLAB / SLUB /Hugetlb therefore have to implement their own
scans over zonelists in order to avoid modifications to the hot
paths.
Slab allocators want to obey the policies set by the running task
but allocations in the context of the allocating task may fallback to
a node that we do not want to allocate from.
Difficulty of excluding a node from an allocation.
If we could combine memory policies of the task with an
MPOL_BIND policy that restricts the node in the page allocator
then this would work.

7

Issues with larger CPU counts per node

Typically we have had 2 processors per node
Newer processors add more and more cores.
We may have to face 16 or 32 processors per node
soon
Arnd Bergmann: Issue with enumerating CPUs per
node?
Additional “NUMA” effects within a node because of
varying distances of the cores to memory.
SGI's new architecture may have two OS nodes per
hardware node for this reason.
Multiple cores will put a lot of stress on the FSB /
Hypertransport links. Reducing Cacheline footprint will
become much more important (SLUB attempts to do
this).

8

Memoryless node support

Accidentally got in as a bugfix but the core Linux code in many
places assumes that an online node has memory.
GFP_THISNODE is broken since it assumes that the first node
on a zonelist is the node with the memory of this node. A
memoryless node's zonelist will have another node as its first
zone.
Because GFP_THISNODE broke in this way the code generally
seems to work but allocates on the wrong nodes. NUMA
allocation layer is no longer working right.
Solution is to add a new nodemap for memoryless nodes. In
various places we need to check if a node has memory instead
of checking if a node is online.
GFP_THISNODE can be fixed by creating new zonelists that
only contain zones local to the node in question.
Fixing GFP_THISNODE means that GFP_THISNODE on a
memoryless node will return NULL which will break lots of
subsystems if we do not have the node memory map.

9

NUMA and the scheduler

Issue of NUMA influences on scheduling has been
open for a long time. No progress on this one.
 NUMA aware load balancing needs to consider page
placement of a process. It is better to move a process
that has pages on the remote node.
Without that data we currently simply assume that
moving over long distances is more expensive.
Relation of sched domains to cpusets is problematic
because cpusets is a hieracy whereas sched domains
are partitioning the system. As a result scheduling in
cpusets is not properly isolated.

10

Lee Schermerhorn's memory policy patches

TBD by Lee

11

Current Problems with Memory policies

Context dependent nature of memory policies
Depends on process context
Shifting a process to another cpuset requires the
translation of all memory policies used by a process

Per node specification for the allocation of hugetlb.
Breakage with numactl –bind (Arnd Bergmann)
Memory policies are not applied to page cache
allocations since we do not pass the VMA pointer
down to the page_cache_alloc() function.
Designed to be modified from the task context that
own the policy.
Mods for SHMEM use and HUGETLB but those can
cause weird interactions.
Combinations of mempolicies not possible.

12

Issues with memory policies at proposed by Lee

Lightweight. Existence guarantee by being only modified
by the task using it. Now we special case for the shared
policies.
Contextual first touch policy. The task which first touches a
page determines its location. No longer true.
We want memory policies to be attached to objects like
files, subsystems. How do those policies interact with the
policies emerging from the process context.
Permission issues
Performance issues if we take the memory policies out of
the process context. shmem needs to take a refcount on
policy.
Program breakage if pages suddenly have their own
policy. F.e. the backup task.
Container needs relative node numbers?

13

Conclusion

NUMA gets to be more and more popular
More work. It gets more complicated.
I need help
Danger of memory allocations becoming
uncontrollable given too many knobs and parameters.
Unanticipated interactions from side effects by
subsystem policies.
Need a logical framework for memory policies / cpuset
etc that is simple and understandable.
User needs tools to see the current policies in effect.
Maybe memory controllers / containers can get rid of
memory policies and cpusets?

